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Abstract 

Microalgae’s adaptability and resilience to Earth’s diverse environments have evolved these photosynthetic microor-
ganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite 
this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion 
of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new proper-
ties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selec-
tive sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will 
highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. 
We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel 
workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscover-
ies. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. 
in ACS Appl Bio Mater 4:5080–5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 
19:3810–3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
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1 Introduction
In recent years, the  CO2 emission and climate change-
induced necessity of developing new Green Circular 
Economies and  CO2 fixation technologies has put micro-
algae in the spotlight [6, 7]. Microalgae, a term used to 
describe a biodiverse polyphyletic group comprised of 
both eukaryotic (Glaucophyta, Rhodophyta, Chloro-
phyta, Haptophyta, Cryptophyta, Ochrophyta, Miozoa, 
Cercozoa and Euglenozoa) and prokaryotic (Cyanobacte-
ria) taxa [8, 9], are predominantly photosynthetic micro-
organisms [7, 10–12] which can be ubiquitously found 
across all of Earth’s habitats [7].

Microalgae’s valuable biochemical composition, pho-
tosynthetic and  CO2 fixation efficiency, fast growth 
rates and their lack of competition for arable land have 
spawned the creation of novel microalgal industries such 
as biomanufacturing, atmospheric carbon capture and 
its conversion into high-value bioproducts and/or bio-
fuels [6, 7, 13]. Despite microalgae’s biodiversity [8, 9], 
these nascent industries only employ a limited number 
of species, restricting their abilities to exploit the diverse 
biological properties present across the wide range of 
microalgal taxa [14–16].

Bioprospecting, the systematic search for novel micro-
algae with biotechnological and/or commercial poten-
tial, is an essential requirement for the expansion of the 
microalgal industry [17]. However, current microalgal 
bioprospecting suffers from low-throughput, ineffi-
cient, time-consuming and non-scalable methodologies. 
This review aims to provide an updated overview of the 

current state of microalgal bioprospecting, addressing 
its limitations and pitfalls. By providing a comprehensive 
perspective on currently used methodologies, identifying 
and critically analysing innovative and transdisciplinary 
approaches, this review aims to serve as a source of inspi-
ration for advancing the implementation of smart micro-
algal bioprospecting.

2  Climate change: a substrate for a microalgal 
revolution

2.1  Global carbon engineers
In the late Archean Eon, Cyanobacteria pioneered oxy-
genic photosynthesis, culminating in the Great Oxida-
tion Event that transformed Earth’s atmosphere and 
facilitated the evolution of aerobic life [18, 19]. Micro-
algae have successfully colonized Earth’s photic habi-
tats [20–26]. Adapting to this broad habitat range has 
exposed microalgae to diverse selective pressures, foster-
ing their remarkable phenotypic and ecological diversity 
[12]. Regardless of their versatility, all microalgae play a 
pivotal role in global nutrient cycling [12, 27]. Microal-
gae annually contribute 50% of the total globally assimi-
lated carbon [28] and drive the biological carbon pump 
[29] responsible for the long-term storage of carbon in 
the deep ocean [30]. As primary producers, microalgae 
form the basis of aquatic food webs [30] and are respon-
sible for the biosynthesis of essential biomolecules such 
as Docosahexaenoic Acid (DHA), the bioaccumulation 
of which across higher trophic levels led to early human 
brain evolution [31, 32].

Graphical abstract
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Like the rest of Earth’s species, microalgae are threat-
ened by climate change [33] driven by anthropogenic 
 CO2 emissions [34]. The eventual translation of global 
warming consequences into ocean ecosystems will 
reduce marine  CO2 availability due to ocean acidification 
and salinification [30]. These environmental shifts will 
pose complex challenges to microalgae, potentially alter-
ing their physiology, ecological interactions, and commu-
nity compositions, which may cascade to higher trophic 
levels and devastatingly disrupt ecological and geochemi-
cal processes [28, 30, 33, 35].

2.2  Microalgal cell factories for every industry
Chlorella vulgaris, isolated and studied in 1890, marked 
the beginning of scientific microalgal exploration [36–
38]. However, human-microalgae interactions date back 
centuries, for instance, the consumption of Arthospira 
(Spirulina) can be traced back to the fourteenth cen-
tury [39, 40]. Microalgae have shaped human evolution 
[31, 32], but they might also allow us to evade the  CO2 
emission-driven path of climate change-led collapse that 
the industrially developed world is currently following 
[34, 41, 42]. International efforts now strive for carbon 
neutrality [42, 43], an endeavour necessitating innova-
tive biotechnological technologies [44–46] and, as in the 
Archean Eon [18],  CO2 has again put microalgae in a 

central position. Microalgae are considered a  CO2 miti-
gation strategy [7, 47] due to their rapid growth and  CO2 
fixation rates, not requiring arable land for cultivation 
and being a cellular factory of biotechnologically valuable 
carbon molecules [47–49] (Fig. 1).

3  Microalgal bioprospecting
3.1  Bioprospecting microalgae’s biodiversity dark matter
Microalgae support a diverse array of industries [16]. 
Regardless of microalgae’s high biodiversity [9], only 
a limited number of microalgal species are currently 
exploited in industrial processes [15, 16, 51–54] (Table 1).

Described microalgal biodiversity encompasses 50,000 
species [55], with conservative estimates placing total 
diversity at around 200,000 species [56]. Despite this 
high biodiversity, the number of commercially cultivated 
species remains in the dozens, with highly economically 
developed regions like the European Union only culti-
vating 46 microalgal species [51]. This under-utilization 
of microalgal biodiversity constrains the nascent indus-
try, impedes diversification into novel applications and 
reduces industrial resilience.

Bioprospecting, systematically sampling and selecting 
nature’s biological resources—taxonomic species, bio-
molecules, biosynthetic pathways, genes or genomes—
offers the possibility of harnessing microalgal biodiversity 

Fig. 1 Microalgal carbon capture and manufacture (CCM) [43, 47–50]. Microalgae’s efficient  CO2 biofixation, carbon conversion and long-term 
storage into high-value biometabolites offers the grounds for developing products and services for an economically profitable, green and circular 
economy
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by exploring novel microalgae. Leveraging microalgae’s 
sustainable nature, bioprospecting not only supports 
industrial, commercial or research microalgal applica-
tions [57], but also aligns with the accomplishment of 
several United Nations Sustainable Development Goals 
(UN SDGs) [58] (Fig. 2). This presents a new opportunity 
for discovering novel species, biometabolites and genes 
using novel biotechnological methodologies to exploit 
microalgae’s untapped potential.

3.2  Current state of microalgal bioprospecting
Bioprospecting, like microalgal consumption as a food 
source [39, 40], has been omnipresent throughout human 
history [60]. The expansion of the commercial use of 
microalgae beyond the food industry, sparked by the US 
oil crises in the latter half of twentieth century [61], pro-
pelled large-scale algal cultivation and intensified micro-
algal bioprospecting. This, in conjunction with academic 
advances, has led to the discovery and characterization 
of diverse taxonomical alternatives to develop the ever-
widening microalgae-supported industrial applications.

Microalgal bioprospecting methodologies involve two 
distinct phases: [1] microalgae sampling and isolation 
and [2] characterization to select microalgae with desired 
traits. Workflows can be classified further into univariate 
approaches, limited to widespread sampling and charac-
terization for a specific trait, and multivariate method-
ologies that integrate multiple selection strategies in the 
search of strains combining several traits to narrow down 
the pool of possible candidate taxa [62].

3.2.1  Sampling and isolation
The first step in bioprospecting is sampling, which is 
typically achieved by directly collecting water samples 
in aquatic environments. Despite this, many other avail-
able methodologies have been adapted to non-aquatic 
sampling [63–65]. Upon arrival at the laboratory, samples 
generally undergo nutrient enrichment with different 

media; typically, ES, F/2 or BG11SW, to promote spe-
cific taxa [63]. Subsequently, single-cell or agar isolation 
methodologies, often combined with dilution techniques, 
isolate specific microalgae to establish mono-algal cul-
tures [63]. Depending on factors like sampling location, 
identified microalgal taxa, and intended use of the cul-
ture, axenic cultures may be obtained through selective 
treatments with antimicrobials such as antibiotics, anti-
fungals, antivirals, and/or enzymatic treatments [63].

3.2.2  Traditional characterization methodologies
Varied characterization methodologies can be applied 
depending on the methodology and the desired 
phenotypic trait/s, an observable and quantifiable 
characteristic/s, used for selection. Contrarily, growth 
rates, commonly estimated from correlation between 
Optical Density (OD) measurements with a spectro-
photometer; typically at 680–750  nm [66–68], and cell 
counts; performed with a haemocytometer chamber 
[69, 70], are a point of consensus across microalgal bio-
prospecting studies (Table  2). Growth kinetics can also 
be employed in a multivariate manner [66, 69, 71–73]. 
For instance, Rezaei, et al. (2023) simultaneously isolated, 
grew and selected high growing strains bioprospected 
from high-mountain lakes and grown in cold conditions 
[66] and Condori, et al. (2024) bioprospected microalgae 
from contaminated water environments to characterize 
their growth and nutrient removal efficiency when grown 
in explosive industry wastewater [69]. These manifold 
combinations of screening criteria enable the selection of 
algal strains both successfully and rapidly growing under 
a selected set of stringent culture conditions [66, 69, 71, 
73]. Similarly prevalent is the weighting of dry biomass; 
performed by sun, hot air, oven, spray or freeze drying 
[68, 70, 74, 75].

Microalgae’s taxonomic biodiversity has turned these 
microorganisms into cellular powerhouses to produce an 
even more diverse range of biometabolites [47–49]. As 

Table 1 Microalgae taxa with commercial applications, adapted from [15, 53, 54]

Microalgae Product Application

Chlorella vulgaris Biomass, Carbohydrates, Vitamin C Health food, food supplement, animal feed

Chlorella spp. Biomass, Carbohydrates, Vitamin C Health food, food supplement, animal feed, wastewater 
treatment

Arthospira platensis Biomass, Protein, γ-Linolenic Acid, Vitamin  B12, β-carotene, 
Phycocyanin

Health food, food supplement, pharmaceutical, cosmetics, 
animal feed

Arthospira spp. Protein, γ-Linolenic Acid, Vitamin  B12 Health food, food supplement, animal feed

Dunaliella salina β-carotene, Carotenoids Health food, food supplement

Haematococcus pluvialis Astaxanthin, Carotenoids Health food, pharmaceuticals

Nostoc spp. Biomass, PUFA, Immune modulators, Antimicrobial extracts, 
Anticancer extracts, Phycocyanin

Health food, food supplement, pharmaceutical, biofertilizers
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such, biometabolite characterization; the identification, 
study and quantification of the industrially relevant mol-
ecules present in newly bioprospected isolates, is a com-
mon step in microalgal bioprospecting workflows.

Bioprospecting efforts in microalgae, driven by the 
pursuit of economically viable biofuels, have consist-
ently focused on lipid and fatty acid characterization [7, 
66, 68–70, 74, 76–78]. Traditionally, multi-step gravimet-
ric methods have been employed to quantify lipid frac-
tions, known for their precision but limited in providing 
a comprehensive lipidomic profile [66, 69, 74, 78–80]. 
Alternatively, chromatographic techniques such as Thin-
Layer (TLC), High-Performance Liquid (HPLC), or Gas 

Chromatography (GC) [66, 68, 70, 76] [79] coupled with 
Mass Spectroscopy (MS), Flame Ionization Detector 
(FID) or Time-Of-Flight (TOF) [79, 81] offer detailed 
analyses of transesterified or transmethylated fatty acids 
[81], enhancing the effectiveness of the lipidomic assess-
ment for biofuel potential [85, 87]. This is the case of 
Ammar, et  al. (2024), which simultaneously gravimetri-
cally quantified and GC–MS profiled the lipid and Fatty 
Acid Methyl Ester (FAME) fractions of bioprospected 
Tunisian algal isolates [68].

Photosynthetic microalgal pigments—chlorophylls, 
carotenoids, and phycobilins—are pivotal in micro-
algal biometabolite production, attracting significant 

Fig. 2 Microalgal bioprospecting aids in the accomplishment of 14/17 UN SDGs* [58, 59]. *The content of this publication has not been approved 
by the United Nations and does not reflect the views of the United Nations or its officials or Member States
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bioprospecting interest [82]. Pigments are analysed 
after having been extracted using organic solvents 
[83] through spectrophotometric readings at pigment-
specific autofluorescence wavelengths, often using 
equations to extrapolate these reads for total pigment 
quantification [67–69, 84]. Variations include HPLC-
based quantification as seen in Grubišic, et  al. (2022) 
or Patel, et  al. (2022), who also extrapolated the total 
pigment content of their bioprospected microalgae by 
using established equations [70, 78].

Due to their diverse applications [47, 49, 85] micro-
algal carbohydrates are also repeatedly bioprospected 
[67, 69, 74, 86]. Commonly, carbohydrate quantification 
is performed through the phenol–sulfuric acid method 
by Dubois, et al. (1956) [87] or similar derivatives [86, 
88]. However, just as with gravimetric lipid quantifica-
tion, Dubois and derivative methods do not explore the 
carbohydrate profile; a knowledge gap also solved by 
GC–MS or GC-FID [88, 89].

Microalgal proteins; yet another highly sought 
after algal biometabolite [90, 91], are quantified using 
spectrophotometric methodologies [67, 70, 74]. 
Both Assobhi, et  al. (2024) and Grubišic, et  al. (2022) 
employed the Lowry method [92] for protein quan-
tification [70, 74], a technique based on colorimetric 
change [93]. Comparably, Araj-Shirvani, et  al. (2024) 
read the OD at 595  nm of their Coomassie Blue Dye 
stained sample and compared the results with a bovine 
serum albumin standard [67]. A different approach can 
be found on Condori, et  al. (2024) [69] or Cruz, et  al. 
(2023) [89], both of which indirectly quantified protein 
content by using a nitrogen-to-protein conversion rate 
obtained from the literature [94].

Notably, microalgal bioprospecting efforts span far 
beyond major metabolite classes and include singular 
metabolites such as phenolic compounds [67, 70, 95], fla-
vonoids [70], and lipid, protein or carbohydrate extracts 
for their potential applications as antimicrobial [70, 96], 
anticancer [95, 97], antioxidant [67, 70, 95, 98], anti-
ageing [95], enzyme inhibiting [95] or prebiotic agents 
[95]. Additionally, physiological algal processes like 
bioaccumulation [69, 99, 100], biomineralization [101] 
phytohormone [102], exopolysaccharide (EPS) [102, 
103] or nanoparticle (NP) [104] production are also bio-
prospected for their industrial applications.

3.3  Bioprospecting: a Herculean endeavour
Despite significant scientific and technological advance-
ments in marine biotechnology [105], the continuous 
worldwide expansion of the microalgal industry [16] 
and the rapid development of marine bioprospecting 
[106], microalgal bioprospecting remains a burdensome 
endeavour.

To begin with, environmental sampling method-
ologies are fast and inexpensive [63], but developing a 
gold-standard guide for best microalgal sampling prac-
tice is still to occur [107]. Moreover, sampling location 
and sample quantities are often determined by conveni-
ence, geographic proximity and the presence of a water 
body. This non-selective bioprospecting overlooks the 
ecological evolution and natural selection history that 
shape stress-adapted microalgal biometabolite com-
position, disregarding the invaluable natural linkage 
between desired phenotypes and sampling locations 
[108]. Indiscriminate sampling may yield diverse 
samples, but technical constraints in post-sampling 

Table 2 Commonly employed characterization methodologies in microalgal bioprospecting

Target Trait Methodology Throughput Example of application

Growth, biomass and photosynthetic metabolism

 Growth kinetics Optical density (OD) High [66–68]

Cell Counts Low [69, 70]

 Biomass weight Dry biomass weighting Low [68, 70, 74]

 Growth under specific conditions Selection Medium–High [66, 69, 71–73]

Biometabolite characterization

 Lipids and fatty acids Gravimetric analysis Low [66, 69, 74]

Chromatography Low [68, 76]

 Pigments OD and equations Low [67–69, 84]

Chromatography Low [70, 78]

 Carbohydrates Dubois phenol–sulfuric acid method Low [67, 69, 74, 86]

Chromatography Low [88, 89]

 Protein Lowry method Low [70, 74]

Coomasie blue dye staining Medium–High [67]

Nitrogen-to-protein conversion rate High [69, 89]
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isolation, culturing, and biometabolite characterization 
make this approach inefficient. The primary obstacle 
for bioprospecting pipelines is the current requirement 
of monoalgal status, a culture condition only achieved 
after a time-consuming and resource-intensive separa-
tion process. Additionally, improper enrichment and 
isolation workflows can arise taxonomic prevalence 
and survival biases stemming from enrichment-media 
selection, microbial competition or, in the case of dino-
flagellate presence, to outright predation [109, 110]. 
Adding to this low-throughput wound is the require-
ment, a recurrently left desire, for axenic cultures in 
most current microalgal characterization methodolo-
gies [111]. Furthermore, a full methodology guide for 
the achievement of this tedious, time-consuming and 
hardly achievable; or impossible [112] axenic outcome 
is also yet to be created [63].

Similarly ineffective, current microalgal characteriza-
tion methodologies require a biomass yield in the milli-
grams [107]. Ideally, this excruciating high biomass yield 
should be achieved with culture optimization but realisti-
cally, bioprospecting efforts do not progress beyond basic 
discriminations such as fresh or saltwater [70, 84, 86]. 
This presents a double-edged dilemma as, while rapid 
growth is a desirable trait, its relevance is diminished 
if the culture conditions used for its assessment do not 
match the future culturing parameters required at the 
prospective application of the strain. Furthermore, the 
induction of several commonly characterized phenotypic 
traits; such as lipid production, is largely culture-param-
eter-dependent [113]. Consequently, a lack of considera-
tion for phenomic plasticity, the ability of an organism to 
adapt its phenotypic traits to the culture conditions its 
subject to [114], and this linkage between culture condi-
tions and observable phenes, can result in the erroneous 
selection of inefficient microalgal isolates or the over-
looking of the most efficient ones.

Likewise, the number of desired phenotypic traits 
and the methodologies employed for their characteriza-
tion are crucial. Yet, commonly employed characteriza-
tion methodologies are outdated, low throughput and 
fail to characterize all relevant parameters [115]. The 
former and the latter can be exemplified by gravimetric 
[66, 69, 74] or phenol–sulfuric quantification [67, 69, 74, 
86] methodologies. These multi-step, tedious processes 
requiring milligram quantities of biomass are, on top of 
that, unable to profile the lipid and carbohydrate species 
present in the samples respectively [79, 80, 115]. Though 
they are an improvement, chromatographic techniques 
are not the silver bullet of microalgal characterization 
due to their multistep, time-consuming and costly nature, 
their unforgiving sample quantity requirements and their 
difficult result standardization across studies [116].

Overall, outdated, inefficient and low throughput cul-
turing, isolation and characterization methodologies 
(Table  2) [115] compromise the application of efficient 
workflows and are significant hurdles to the develop-
ment, application and economical success of microalgal 
bioprospecting and the expansion of the algal industry.

4  Smart microalgal bioprospecting
Microalgal bioprospecting is currently limited by the 
employment of low throughput methodologies, a subse-
quent impediment to the implementation of a biodiverse 
portfolio of industrially profitable microalgae species. To 
respond to this impending need, we propose the develop-
ment of a new wave of high-throughput ’’smart’’ micro-
algal bioprospecting workflows founded on ecological 
considerations, novel approaches and robust methodolo-
gies, equipment and techniques.

4.1  From the pond to the laboratory
Sampling and targeting everything, then selecting later 
is not currently viable. Therefore, smart bioprospect-
ing must aim to enhance the likelihood of isolating only 
desired microalgal isolates. This must begin with a criti-
cal assessment of environmental sampling locations with 
ecological pressures that are likely to generate the desired 
microalgal phenotypic traits [17, 62], an approach known 
as bio-rational collection and screening [17, 62]. Similarly 
desirable is the application of multivariate approaches 
that link bio-rational sampling with natural-pressure-
imitating stringent laboratory culturing conditions [66, 
69, 71, 73]. Combined, these methodologies significantly 
decrease the pool of ’’to-be-characterized’’ microalgal 
strains [62], lowering economic, human and time costs 
[63] and enhancing throughput. The success of this is 
exemplified by Royal DSM, a Dutch company that has 
achieved commercialization and EU novel food approval 
for a high DHA-producing Schizochytrium sp. strain bio-
prospected bio-rationally [17, 117, 118].

Despite marketing microalgae’s biodiversity, many 
“bioprospecting” efforts limit their activity to charac-
terizing strains from culture collections [17]. Despite 
being a source of potentially relevant strains [119], cul-
ture collections do not sample bio-rationally. As such, 
indiscriminate ’’culture collection bioprospecting’’; cou-
pled with the likely genetic drift, shifts in allele frequen-
cies arisen during population bottlenecks generated 
by routine serial subculture, and phenotypic changes 
that a long-term culture is prone to suffer [120, 121], is 
likely to yield non-competitive strains. Additionally, cli-
matically and microbially ecological obsolescence makes 
this approach suboptimal when prospective large-scale 
culturing is a desired bioprospected strain trait. Con-
versely, local bio-rational sampling offers access to 
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ecologically-competitive isolates [122, 123]. Never-
theless, exotic sampling also holds vast potential. For 
instance, targeting extremophilic microalgae capable of 
thriving under cultivation conditions lethal to contami-
nants is a proven commercially successful approach, as 
evidenced by Dunaliella salina or Arthospira platensis 
dominating their respective markets [24, 124].

Combining bio-rational sampling with multivariate 
approaches and focusing on unique natural [125–127] or 
man-made [128, 129] ecological niches will enhance both 
the taxonomical diversity of industrially exploited micro-
algal species and the discovery of novel compounds with 
industrial applications [130–132].

4.2  From algal soup to monoalgal culture
Bettering the currently infuriatingly low-throughput 
enrichment and monoalgal culture isolation [133] 
requires adaptability to the objectives behind smart bio-
prospecting. For instance, approaches desiring taxo-
nomical biodiversity should focus on impeding the 
introduction of unwanted biases. This can be achieved 
by the fractionation of the original multialgal sample into 
smaller individual aliquots followed by the enrichment of 
each individual fraction with multiple distinct culturing 
medias and conditions. In turn, these differing parame-
ters foster aliquot-specific “biases”, which result in differ-
ing taxa-specific growth and, even, survival rates. On the 
contrary, multivariate approaches used to isolate growth 
under stringent wastewater [134], salinity [135], pH [136, 
137],  CO2 [138] and light [139] parameters should con-
tinue their expansion towards novel selecting parameters 
such as growth in anaerobic digestates [140] or unfiltered 
coal-fired flue gas [141].

Regardless, implementing automation and high-
throughput cultivation methodologies are increasingly 
imperative. Multi-well plates [142, 143] and microflu-
idic platforms [144–146] offer throughputs orders of 
magnitude above traditional culturing, both in terms 
of time and in the number of nutrient profiles tested 
per run [145, 147]. An example is provided in Radzun, 
et  al. (2015) which rapidly optimized the composition 
and individual concentrations of 12 macro- and micro-
elements under non-limiting  CO2 and light conditions 
in an automated 1,728 multi-well setup considering the 
maximum growth rates of 8 different microalgae [147]. 
Despite these advances, workflow limitations persist 
due to the small volumes offered by these approaches. 
Overcoming this also requires automation, which is now 
implemented in photobioreactors to provide larger cul-
turing volumes. This nascent field, practically unknown 
to microalgal bioprospecting, is highly adaptable and 
allows the monitoring of as many culture parameters 
as sensors exist [148–151] and, as seen in Nguyen, et al. 

(2018) [150], the adoption of cheap sensor-culturing set-
ups will reduce processing time and costs, reallocating 
resources to other crucial non-automatable processes.

Nevertheless, no recent technical advances have been 
as impactful and widely adopted in microalgal bio-
prospecting as Flow cytometry (FC) and Fluorescence-
activated cell sorting (FACS). FC offers rapid and reliable 
screens of environmental samples through single-cell 
interrogation by laser interception and detection of scat-
ter light to generate datasets with ’’events’’ that represent 
different cell populations. Coupled with a cell sorter, FC 
becomes FACS, enabling the isolation of desired popula-
tions based on specific sets of parameters called "gates". 
This technology, as demonstrated by Jakob’s, et al. (2013) 
[152], has no less than revolutionised microalgal isola-
tion into monoalgal cultures [63, 133, 153]. FACS is also 
instrumental in generating monoalgal axenic cultures 
[63, 152–154]. By interrogating environmental samples 
for chlorophyll fluorescence, it distinguishes chloro-
phyll-containing algal cells from bacteria, dead cells, and 
debris, after which, chlorophyll-positive gating allows 
monoalgal isolation [111, 152, 155]. Despite its benefits, 
FACS isolation exposes cells to shear force, electrostatic 
charges and high-energy lasers. As also seen in Jakob’s, 
et al. (2013), the success of FACS depends on cell param-
eters like size, shape, abundance and hardiness [152, 154], 
limiting its universal applicability across all microalgae 
taxa [63, 154]. This prevents abandoning micromanipula-
tion, the isolation of single cells through aspiration with 
microcapillaries, a resource-intensive, low-throughput 
technique requiring highly skilled microscopy users pro-
ficient in microalgal morphological identification.

However, an evolution in centrifugation technology 
holds promise, whereas FACS has limitations. Tradi-
tional centrifugation is integral in microalgal studies for 
tasks like supernatant removal, re-culturing and bio-
mass harvesting [156]. Although density centrifuga-
tion has also been proposed to achieve axenic cultures 
[157], it requires optimization, lacks automation and can 
reduce cell viability due to shear forces [156]. A promis-
ing high-throughput and automatable alternative lies in 
counterflow centrifugation-based instrumentation [158]. 
Widely used in cell therapy [158, 159] for its cell concen-
tration, buffer exchange and cell-size based separation 
capabilities with minimal impact on cell viability [160], 
the potential of counterflow-centrifugation is yet to be 
investigated by microalgal researchers. Therefore, coun-
terflow centrifugation could greatly benefit microalgal 
bioprospecting by enabling size-based separation among 
various microalgal taxa and their common contaminants 
[161], facilitating monoalgal axenic isolation.

Regardless, the taxa-wide prevalence of microal-
gae-attached bacteria [162] makes neither FACS nor 
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counterflow centrifugation an axenic-obtaining silver 
bullet. Importantly, the reasons and viability behind 
removing this unique phycosphere must be addressed as, 
in some cases, this bacterial ’’contamination’’ is not only 
not problematic but essential or positive for microalgal 
development [162, 163]. This is so much so that phyco-
sphere-bioprospecting for the enhanced production of 
microalgal-bacterial bioproducts or co-cultivation-arisen 
microalgal productivity improvements is an increasingly 
developing field [164–167]. Despite this, some work-
flows still require absolute axenic status and, for that, 
the employment of ultrasonication; > 20  kHz ultrasonic 
waves, and its high throughput adaption is needed [155].

After establishing monoalgal cultures, the last pre-
characterization step is microalgal identification. Both 
morphological and traditional molecular identification 
[168] are not conducive to high-throughput applications. 
While metabarcoding is preferred for its ability to reduce 
human error and bias, its independence from taxonomic 
expertise [168], and its capability to comprehensively 
assess axenic status or identify phycosphere constituents, 
there remains a need for improved throughput. As such, 
the implementation of reliable Artificial Intelligence 
(AI)—Deep Learning Image Recognition software [168–
170] or novel molecular identification technologies [170, 
171] is necessary. An example of the latter is Jahn’s, et al. 
(2014) development of a high-throughput metabarcod-
ing 12-well plate setup, employing boiled MiliQ water for 
algal lysis and an automated sequencing chromatogram 
analysis methodology [171].

4.3  Bioprospecting into the future
Currently, microalgal characterization methodolo-
gies are inefficient, have low throughput [115], and they 
often require monoalgal cultures. Despite the through-
put capabilities of existing and proposed methodologies 
for achieving this unialgal, axenic or not, state, creating 
and maintaining multiple monoalgal cultures during 
bioprospecting is nonsensical, given that most will be 
discarded during characterization. Could selection be 
achieved from an enriched multi-taxonomical algal mix-
ture? Moreover, what if a living algal sample were not 
required?

Culture-independent bioprospecting, has been 
achieved through metagenomic approaches such as 
Whole Genome Shotgun [172, 173]. Advances in Next 
Generation Sequencing (NGS) and global sequencing 
projects have transformed metagenomic mining, ena-
bling the in silico search for genes encoding biometabo-
lites [172], which becomes commercially viable upon 
successful gene expression [174]. Nevertheless, microal-
gal genome sequence databases are currently restricted to 
a small number of model species, and there is insufficient 

knowledge of microalgal metabolic pathways [175] and 
achieving reliable genetic transformation of multiple 
microalgae species remains unattainable [176]. Together, 
these current factors limit the application of non-culture 
dependent microalgal bioprospecting.

Spectroscopic imaging techniques have frequently 
been proposed as alternative culture-dependent charac-
terization methodologies that enable high-throughput, 
non-invasive and low-cost characterization [177]. Among 
these, visible/near infrared, Fourier transform infrared 
(FTIR), and Raman spectroscopy have garnered signifi-
cant attention due to their potential in microalgal bio-
metabolite characterization. However, these techniques 
face several limitations that necessitate extensive optimi-
zation and complicate their implementation into high-
throughput phenotyping workflows [114]. For instance, 
Raman spectroscopy requires species-specific optimiza-
tion [114] and is affected by the background fluorescence 
of microalgal pigments, while FTIR is affected by spectral 
interference from water [178]. Altogether, and despite 
their potential, spectroscopic methodologies are not yet 
well-suited for high-throughput biometabolite and taxa-
wide microalgal bioprospecting.

Another proposed high-throughput approach is Fluo-
rescent Probing (FP), the interrogation of autofluorescing 
molecules or molecule-specific fluorophores to identify 
and quantify target metabolites [179]. This approach 
allows for the assessment of non-monoalgal cultures 
and has been widely used in lipid bioprospecting, with 
Nile Red and BODIPY 505/515 being the most com-
mon fluorophores for cheap and rapid in  situ lipidomic 
assessment [179, 180]. FP provides throughput levels 
unimaginable with traditional lipid quantifications when 
integrated with FACS [180] or microplate workflows 
[181]. Moreover, various other fluorescent dyes, such as 
SYTOX Green, a nucleic acid binding fluorophore [182, 
183], have extended FP far beyond lipidomics [180, 184, 
185]. Although FP presents significant potential for 
enhancing bioprospecting throughput, challenges persist, 
including variable fluorophore permeation across dif-
ferent taxa [186], interference with microalgal pigment 
autofluorescence [180] and the need to establish accurate 
correlations between fluorescence intensity and target 
molecule quantity. Investigating novel fluorophores, such 
as AC-202; a promising alternative to BODIPY [187], 
could help overcome these challenges and facilitate the 
transition from traditional low-throughput methodolo-
gies [179, 186].

Many of the complications associated with fluoro-
phore-based FP can be mitigated by utilizing microal-
gae’s innate ’’fluorophores’’: pigments. Pulse Amplitude 
Modulated (PAM) fluorometry [188], is a non-invasive 
and high-throughput methodology that offers valuable 
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phenotypic insights by assessing light absorption and 
photoprotective potentials of microalgal strains [189, 
190]. Combining PAM with the optimization of cultiva-
tion or stress-induction conditions provides a deeper 
understanding of the interactions between microalgal 
photophysiology and cultivation parameters [114, 189, 
191]. The Phenoplate, Herdean, et al. (2022), exemplifies 
the high-throughput capabilities of PAM when integrated 
with variable cultivation parameters [189, 192], suggest-
ing that further development of similar [142] rapid FP 
multiparametric workflows could revolutionize microal-
gal characterization.

Nonetheless, current FP is significantly limited by vari-
able cell wall penetrating abilities and the lack of a diverse 
array of biometabolite-specific fluorophores or probing 
methodologies. However, a transformative shift towards 
nucleic acid or peptide-led and electrophoresis or nan-
oparticle-assisted methodologies appears imminent. 
Described elsewhere as biosensors [193], these novel 
metabolite-specific platforms are not merely aspirational 
but are already being successfully applied in microal-
gal research [2, 3, 194, 195]. Central to this approach 
are Aptamers, small DNA, RNA or peptide chains that 
specifically bind to biomolecular targets. The System-
atic Evolution of Ligands by Exponential Enrichment 
(SELEX) has evolved into a highly adaptable in  vivo or 
in vitro methodology for aptamer synthesis [196]. SELEX 
can be performed for a myriad of molecular; or cellular 
targets [196]. Furthermore, the affordable and versatile 
nature of nucleic acid and peptide modification facilitates 
post-SELEX enhancements such as truncation, extension, 
site-directed mutagenesis and modification or attach-
ment of fluorophores [197] and Quantum Dots, novel 
inorganic fluorophores [198–201].

Widely applied in the biomedical field [202], aptamer-
sensing has been primarily applied in microalgae to detect 
Harmful Algal Bloom-produced biotoxins [203]. Due to 
their sensitivity, specific binding, rapid and cost-effective 
development, and post-development adaptability, aptam-
ers are promising for microalgal metabolite sensing. Sev-
eral research groups have already proved this potential. 
For example, Prof. Yoon-E Choi’s laboratory (Korea Uni-
versity) has successfully employed single-stranded DNA 
aptamers for the in vivo sensing of ATP, paramylon and, 
importantly, β-carotene in the non-cell wall possessing 
microalgae Euglena gracilis and Ochromonas danica [2, 3, 
195, 204, 205]. Furthermore, aptamers targeting biotech-
nologically relevant molecules, such as the bio-available 
form of vitamin B12, methylcobalamin [206], and  H2O2, 
a marker of oxidative stress [207], or specific binding 
sites, such as the plastoquinone binding niche of Photo-
system II D1 protein [208] have been developed and are 
poised for implementation across a broader spectrum of 

microalgae. Aptamer designs targeting biological dock-
ing sites, organelle-specific motifs, or even cell-specific 
motifs [209], represent promising avenues for expanding 
aptamer applications in diverse biotechnological fields 
and for enabling smart bioprospecting approaches.

Microalgae’s cell walls, cell membranes, and organelle 
walls still pose significant challenges for intracellular 
aptamer delivery. Common methods for introducing 
foreign DNA into microalgae include glass bead agita-
tion, microparticle bombardment, Agrobacterium-based 
delivery and bacterial conjugation [210, 211]. However, 
these techniques are not suitable for high-throughput 
bioprospecting workflows due to their variable efficiency 
and, in the cases of Agrobacterium delivery or bacte-
rial conjugation [210–212], their non-transient delivery 
falls under Genetically Modified Organism legislation 
which would restrict the commercialization of newly bio-
prospected strains [213]. Despite these challenges, novel 
intracellular delivery methods are under development 
[211, 214, 215]. Cell-penetrating peptides, Liposome-
mediated delivery and Nanoparticles show promise as 
alternatives [211], though these emerging approaches 
require further research to assess their potential, espe-
cially with algae. However, even if these methods achieve 
higher efficiencies, microalgal biodiversity is likely to 
impede taxa-wide standardized permeation capabilities, 
a prospective bias that complicates the implementation 
of these delivery methods for bioprospecting.

In contrast, reversible electroporation, the transient 
electro-generation of temporary membrane pores, is a 
reliable and widely used method with a proven record 
of successful intracellular delivery rates across various 
microalgae taxa [211, 216]. Electroporation is commonly 
achieved through Pulsed Electric Fields (PEF), electri-
cal pulses of a voltage in the kV and of a duration in the 
ms or ns range [217], parameters that require species-
specific optimization [216]. Although various method-
ologies for optimizing electroporation settings exist [216, 
218], all electroporation optimization requires monoal-
gal cultures. Cell size, a parameter that can be selectively 
managed through upstream methodologies like FACS 
or counterflow centrifugation, significantly impacts the 
success of cell permeabilization [219, 220]. Therefore, 
size-based fractionation of a non-monoalgal sample and 
its distribution across different electroporation param-
eter gradients may be essential for achieving efficient 
taxa-wide intracellular delivery. This approach could be 
facilitated by commercially available high-throughput, 
multi-well electroporation platforms or by developing 
custom in-house setups [221, 222].

Regardless, free-floating aptamers present in a micro-
algal cytosol would face enzymatic degradation even if 
successful intracellular delivery is achieved. A solution 
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for this issue is NP conjugation. For example, Prof. Yoon-
E Choi’s successful aptamer-sensing has been performed 
through conjugation with Graphene Oxide NPs (GOnS) 
and Gold NPs (AuNPs) [2, 3, 195, 204, 205]. Interestingly, 
GOnS provides fluorophore quenching [2, 3, 195, 204, 
205], providing a simple yet effective ON–OFF detec-
tion platform. Free-floating aptamer-fluorophores are 
firstly incubated with GOnS to achieve the quenching or 
OFF state and only after exposure to the aptamer-specific 
molecule these aptamer-fluorophore complexes detach, 
subsequently freeing the fluorophore from quenching 
and achieving the ON state. Furthermore, specific NP 
designs can also selectively target certain intracellular 
compartments [223, 224], a transport choice that can also 
be achieved through NP conjugation with intracellular 
guiding peptides [225, 226].

5  Conclusion
Microalgal bioprospecting holds transformative potential 
for advancing diverse microalgal industrial applications 
and bettering industrial robustness. Yet, current efforts 
remain hindered by a lack of bio-rational sampling and 
outdated, low-throughput characterization method-
ologies. Addressing these gaps demands a shift towards 
Smart Microalgal Bioprospecting.

The impending abandonment of non-selective sampling 
requires the integration of bio-rational sampling with 
expanded use of high-throughput tools such as FACS or 
implementing novel transdisciplinary approaches such as 
counterflow centrifugation. In combination with the use 
of automatable high throughput cultivation platforms 
such as multi-well plates and microfluidics, this new 
wave of sampling and laboratory adaptation workflows 
can improve throughputs, reduce costs and facilitate 
monoalgal isolation at a scale, an essential stage for accu-
rate microalgal characterization. Moreover, emerging 
technologies such as fluorescent probing, whether non-
invasive PAM or novel biosensor platforms are promising 
in enabling biometabolite detection. Despite the poten-
tial, a further array of biometabolite-specific aptamer 
or peptide-based biosensors must be developed. Fur-
thermore, cell-penetrating peptides, liposome-mediated 
delivery, nanoparticles and electroporation technologies 
require further development to achieve taxa-wide intra-
cellular biosensor delivery.

In addressing these current challenges and exploring 
emerging technologies with bioprospecting potential, 
this review aims to aid fellow researchers in the rethink-
ing, developing and implementing of a new wave of smart 
microalgal bioprospecting efforts.
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